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By Chieh-Chien Chang and Vivian O'Brien
SUMMARY

A suggestion is glven for classifying the compressible potential
Tlows according to the locetion and number of singularities in the sub-
sonlic region of the hodograph plane, which seems to offer a convenient
criterion for systematic investigation of these flows with Chaplygin's
original method. The primaery object of the paper is to present and
anaelyze & few useful solutions of compressible potentisl flow with the
exact gas law. Thesge solutions include flows about convex corners
which are the same type given by Kraft and Dibble. These flows belong
to the same class as that of Ringleb, that is, they have a hodograph
singularity at the origin. For this reason they are called generalized
Ringleb flows. Furthermore, the exmct solution of compressible flow
through a particular contracting channel is given. This flow is char-
acterized in the hodograph by a source corresponding to incoming velo-
city and a sink corresponding to throat velocity. The channel flow near
the point of inflection of the boundary is given in detail.

INTRODUCTION

The hodogreph method as applied to the two-dimensional potentisl
flow of compressible perfeet fluld was demonstrated by Molenbroek (ref-
erence 1) in 1890 and by Chaplygin (reference 2) in 1904, and has lately
been formuleted more extensively by Tsien and Kuo (reference 3), -
Lighthill (reference }4), Cherry (reference 5), Chang (reference 6), and
so forth. Although the mathematical theory of the method is well estab-
lished, very few exact solutions of physically interesting flows have
been found. Solutions have been found by Kérmén and Tsien (e.g. s refer-
ence T) and Guderley and Yoshibhara (reference 8) using hypotheticel gas
laws. There is danger that important physical features may be lost in
such spproximate soclutions even though the analysis is often very much
simplified. It would seem worth while to obtain as meny compressible
flows as possible with the exact gas law.
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There are a number of difficulties which impede the investigators
in the search for exact solutions for compressible flow. In general,
there are singularities in the flow field which make anslytic continua-
tion necessary. The analytic conbtinuation even across a simple pole is
complicated for compressible flow. It would be a formidable mathematical
task to £ind the analytic continuation across the higher-order singu-
larities. Lighthill's (reference 4) or Cherry's (reference 5) method of
expressing Cheplygin's function of complex eigenvalue ih terms of a
series of Chaplygin's functions of positive integral values sounds fine
analytically; however, in practice the numerical celculation is rather

Impracticeal.

Huckel's tables (reference 9) are the only satisfactory ones on the
Chaplygin function (which is, in effect, a variety of hypergeometric
functions of the Mach mumber depending on two parameters, i.e., the
gpecific heat ratio 7 and the eigenvalue n) covering a large enough ,
range of n with small enough intervals of Mach mmber M +to determine
the necessary information for a compressible flow of the perfect gas
with 7 = 1.4. Even with Huckel's tables, the range and intervals of
Mach mumber and of eigenvelue n are too limited for calculeting the
flow in many cases. The serles solution representing the stream func-
tion in the hodograph plane converges very slowly near flow singulari-
ties, if they are not at the origin. Many more terms (corresponding to
larger values of n) than those available in the tables are needed in
order to obtain & closer estimation to flow behavior. Also the existing
methods of summing a slowly converging series are rather inadequate to :
handle the present problem. The unpublished method of Shanksl (refer- : :
ence 10) for summing such series seems a step forward, and it was cer-
tainly helpful for the present work.

For very large values of mn, the asymptotic solutions of the
Chaplygin function in the sense of Cherry (reference 11) require tables
of Bessel functions of both the first and second kind. Although many
Bessel functions have been calculated by the Harverd Computation Labora-
tory, National Bureau of Standards, and others, the tebulation of Bessel
functions of the second kind is quite incomplete.

To avoid the above difficulties, the authors attempt to show with
the hodograph method a few simple solutions of compressible flow which
require no analytic continuation and are Just within the capacity of a
desk computer and the range of existing tables. It is well-known that
the simple Ringleb solution (reference 12) on the curved convergent-
divergent nozzle shows many interesting propertles of smooth transonic
potential flow. In principle, this compressible Ringleb flow is deduced
from the Incompressible flow turning around a semi-infinite thin plate.
This corresponds to a doublet at the hodograph origin.

lThe authors are indebted to Dr. G. S. S. Ludford for obtaining a
copy of Shanks' paper. .
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Kraft and Dibble (reference 13) have studied a more general class
of hodograph flows with a multiple pole at the origin and boundaries
composed of constant 6 and constant velocity magnitude q. ZEach flow
then covers a sector of a circle about the origin in the hodograph plane.
The Ringleb flow is a specisl case of this class of flows, as are the
generalized Ringleb flows to be discussed later. Among others, Kraft
and Dibble give the detailed smooth flow pettern for flow turning about
a 60° corner sngle which is obtained mumerically with the differential
analyzer. The solid boundary is composed of straight lines and a rounded
corner, where the velocity magnitude is constant everywhere on the cormer.

Corresponding to multiple-order singularities at the origin, a
femily of compressible flows are derived here from the Iincompressible
flow sbout a sharp convex corner. ©Such an approach had been briefly
indicated in reference 14. These flows belong to the class of Ringleb
flows and are therefore called generalized Ringleb flows. Although much
had been leerned from the original Ringleb flow and the flows of Kraft
and Dibble, there still remained some unexplored features that such a
family of flows might illuminate:

(1) The effect of the size of the cormer angle upon the maximum
possible velocity for smocoth isentropic flow

(2) The pature and influence of the limiting line for different
members of this flow family .

. (3) The identification of all the pieces of hodograph flow with the
flow in the physical plane

The present treatment attempts to cover this unknown ground with the
simple calculating tools avallable to an ordinary researcher. There
are still a number of things which call for further investigation.

Another interesting example is the compressible flow through a two-
dimensional contraction channel. The Ilmposed conditions on the flow
are: (a) The low-velocity incoming flow is uniform and parallel to the
x-axis and (b) the outgoing flow is uniform, parallel to the axis, and
of higher speed. So far, no exact solution for such a compressible
channel flow is available. In order to show the essential features
without becoming involved in too complicated an analysis, the ratio of
incoming to outgoing velocity in the channel flow of the incompressible
fluid (reference 15) is assumed equal to 1/2, (1.e., ratio of inlet area
and throat area is 2:1) without specifying the geometry of the channel.
The domain of flow in the hodograph is restricted to lie within the
annular region between the hodograph source corresponding to the incoming
flow and the hodograph sink corresponding to the outgoing flow. Conse-~
quently, the entire flow in the hodograph can be represented by a single
series without the complication of analytic continuation. There is,
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however, a disadvantage due to this choice; nemely, the channel becomes
infinitely long. In consequence it 1s difficult to calculste the whole
flow field numerically and so only the channel boundary is given and
the channel flow in the neighborhood of the point of inflection is shown
in detail.

An amplification of Huckel's tables was made for the present calcu-
lation and is included in the report as tables 1 to k. These tables
were calculated with the ordinary desk computer and are expected to be
accurate to the third place. (See appendix A.)

This paper offers & simple means of classifying potential compress-
ible flow according to the location and number of the hodograph singu-
larities in the subsonic domain instead of the singularities in the
physical plane. Examples are given for each group, some well-known,
some new. The flows are restricted to only those which can be treated
with Chaplygin's method (reference 2). Perhaps such a classification
will lead to systematic investigation of useful solutions of hodograph
equations in the future.

The authors wilsh to express their appreciation to Professor F. H.
Clauser for giving constructive criticism to this project and also to
Mr. B. T. Chu for his valuable assistance. This investigation wes car-
ried out in the Aeronsutics Department, The Johns Hopkins University,
under the sponsorship and with the financial assistance of the Nationsal
Advisory Committee for Aeronautics.

CLASSIFICATION COF TYPES OF FLOWS
ACCORDING TO HODOGRAPH SINGULARITIES
The laws of mass and momentum conservation of the isentropic,

irrotational flow of an inviscld, compressible fluid can be expressed
in terms of a single differential equation (reference 3):

-

(82 - vy - 2uviy + (a2 - vE)¥y = O (1)

where x and Yy are rectangular coordinates, u and v are the
respective velocity components, a is the local sound velocity, and V
is the stream function defined by
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J

Here p 1is the local density and the subscript o refers to the stag-
nation.condition. (A list of symbols is given in appendix B.)

Introduce the velocity magnitude q = 2 + v2 and the constant

ultimate velocity q = > 2 T It can be shown that both a and p

are unique functions of velocity magnitude q:

_E'E._-:l-._q;z.:l—-r ‘1
2 2
7o) Im
< (3)
P _ _ B
'6;—(1- T)
.

where 'r=qz/qm2 (0£751) and B=1/(y - 1).

For given boundary conditions, equation (1), being nonlinear, is
very difficult to solve. Chaplygin (reference 25 presumebly saw that
the coefficients of the high-order derivatives of V¥ contain only func-
tions of u and v vwhich are in turn related to the first derilvatives
of V. Consequently, he succeeds in the use of q and 6 as inde-
pendent varisbles to express the equation in the hodograph plane as

qzq;qq + (Mz + :L) q_’l.lfq + ( - Mz)ﬂree =0 (%)

where M = q/a is the Mach number, being & function of q bdbut inde-
pendent of 6. The Important gain of the equation in this form is its
linearity, the separability of varisbles, and the feasible superposition
of particular solutions. It is elliptic in character if M <1 and
hyperbolic if M >1. The particular solution chosen by Chaplygin is
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¥(q,8) = ¥_(q)e™® (5)

where n is real. Then Wn(q) satisfies an ordinary differential
equation where prime means differentiation with respect to q:

Q¥+ (l + Mz)q‘!fn' - 112(1 - MZ)Wn =0 (6)

whose solution is

2
Wn(Cl) = an <an}bn; Cns q2> (7)
Iy
where
a, + bn =n - B ]
,a'nbn =_E(HT+Q B > (8)
c, =1+ 1
and
éz
Flan,by; ens —5 (9)
m

2
is a hypergeometric function. Since F(a.n,bn; Cps qz depends only
Iy

on n and 7 instead of three parameters, it may be called the
Chaplygin function. For M = O, the incompressible case, F =1 eand
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¥(q,8) = q?ei®®, Note that el®® remains the same for compressible

and incompressible flow. This means that, for this particular solution,
compressibility has no influence on the velocity phase angle 6. For
each particular value of 7 and n, the compressibility influences only
the velocity megnitude, that is,

2

2
qn——>an(an,bn; Cpi —= (10)
%

This point leads Chaplygin to his famous method: If the flow or stream
function of the incompressible fluid is known in the hodograph plane
and is expressible in a power series of g, a corresponding compressible
flow in the hodograph plane can be obtained by replacing qP in each

2
term of the power series by qQF a,sPn3 Cns qé . It should be noted
e

that there is a marked difference In the valid domain of the compress-
ible and incompressible hodograph planes. The incompressible hodograph
domain is infinite in extent while the compressible hodograph domain 1is
restrigted within the circle of ultimete velocity qp. If the two
streamlines for the same value of V¥ 1in the compressible flow are com-
pared, the two streamlines are not the same geometrical shape. The -
larger the Mach number, the more the distortion.

Cheplygin (reference 2) shows that this hodograph flow can be
uniquely mapped to the physical plane as long as the flow is nowhere
.supersonic. Later investigators show that as long as the Jacobian
d(x,y)/3(q,6) 1s not singular, the hodograph flow can always be mapped
conformally back to the physical plane. The boundary line where
3(x,y)/3(q,8) = 0 is called the limiting line by Tollmien (reference 16)
and Tsien (reference 17). Thus, in the compressible flow, the valid
hodograph domain is further restricted by the limiting line, which lies
inside the circle of ultimate velocity gq, in the supersonic region.

Only the hodograph flow within the limiting line can be meaningful flow
in the physicel plane. However, if only isentropic flow is of interest,
the hodograph flow should be further confined to the region within the
streamline first touched by the limiting line.

There is one complicated feature with this method, that is, if the
incompressible hodograph flow has one or more regular singulaerities in
the flow region, one power series 1s required for each annular region
of convergence between the singularities. Of course, the anslytic con-
tinuation is required across the singularities. However, in applying
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the compressibility effect with the hypergeometric functions, the cor-
responding analytic continuation is very difficult to find. Cherry
(reference 5) and Lighthill (reference 4) have contributed a great deal
on this point for flows without circulation. As far as flows with circu-
lation are concerned, that problem is far from being solved.

So far, the boundary conditions of equation (1) have not been dis-
cussed. The situation cannot be handled for general physical boundary
conditions or even for general hodograph boundary conditions. Chaplygin's
method of particular solution can treat only the simplest hodograph
boundary conditions; that is, where the boundaries are composed of lines
of constant 6 and circular arcs of constant gq, such as the flow
through an aperture with inclined straight walls as showh in reference 6.
Consequently, the flows can be classified only by means of the hodograph
singularities. According to the order of simplicity of solution, the
flow solutions are classified into the followling categories:

(l) One singularity located at hodograph origin.

The simplest singularity of this type is a source at the hodograph
origin, the stream function of which is V¥ = -0 as shown in figure 1 a)
for the incompressible flow. The streamlines are straight radial lines
extending from the origin to infinity. It is interesting that this
hodograph source corresponds to a physical sink which has streamlines
coming from infinity and running radially into the origin. However,
for the compressible flow with hodograph source at the origin (fig. 1(b))
the stresmlines are tangent to the characteristics at the sonic line.
The sonic circle is the limiting line and the flow camnot continue
beyond this circle in the hodograph. In the physicel plane, it is
impossible to continue the flow inside the sonic circle.

Figures 2(a) and 2(b) show the vortex both for the incompressible
flow and the caompressible flow in the hodograph and physical planes.
Note that a vortex in the hodograph becomes & vortex also in the physical
plane. Both vortices have the same sense, and the flow near the hodo-
graph origin corresponds to the physical flow far away and vice versa.
Although the incompressible flow extends to infinity in both the hodo-
graph and physical planes, the compressible flow is restricted within
the circle of ultimate velocity q in the hodograph plane and outside
the ultimaste velocity circle in the physicel plane. This is due to the
fact that the ultimate-velocity circle is a streamline which is tangent
to all the characteristics and is thus the limiting line.

These simple flows are well-known. They give a clear demonstra-
tion of the principles involved.

A combinaetion of hodograph source and vortex at the origin will
have the limiting line occurring on a circle about the origin with
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radius between the sonic and ultimste velocity. This case has been
fully explored by Taylor (reference 18). The Ringleb flow (reference 12)
and the generalized Ringleb flow as given in this paper are some examples
of other types of singularities at the hodograph origin. It is inter-
esting to see that this group can produce transonic flows.

This is the simplest in analysis of the four groups given, because
the compressibility effect has no influence on the local character of
the singularity at the origin.

(2) One singularity located at the hodograph origin and one or more
located on the circle of maximumm veloeity which is not greater than
sonic velocity.

Flows of this type are the Impinging jet of subsonic velocity
(reference 19 gives the incompressible case) and flow through an aper-
ture (references 2 and 6). Impinging jets can be treated for the com-
pressible flow without difficulty. This group can produce subsonic or
at most sonic flows. The compressibility effect will distort the local
streamlines of the outer hodograsph singularities from the corresponding
incompressible ones.

(3) Two singularities, one located at the lowest speed (g; > 0)
and the other located at the highest speed (q_2 € a) where the region of
hodograph flow is located in the anmilar reglon between the singularities.

There are a number of such flows for various contracting channels.
One example is discussed in this report. This group can also produce
only subsonic or at most sonic flows. It i1s not too difficult to treat
if the incompressible hodograph flow can be expressed analytically. At
both singularities the compressibility effect will distort the stream-
lines locelly from the Incompressible flow pattern.

(4) One or more hodograph singularities all located inside the flow
domain with no streamline tangent to a characteristic.

Hodograph flow corresponding to Borda's mouthpiece (the incompress-
ible case is given in reference 19) may be considered as an example.
The hodograph flow corresponding to the physical flow past a circle is
another example except this requires a two-sheeted Riemann surface
(reference 5).

The flows of this type are much more complicated. The compressi-
bility effect will distort the streamlines in the neighborhood of the
gingularity if not at the origin. Analytic continuation is always neces-
sary. However, this group could produce transonic flows about a closed
body, if no limiting line occurs.
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This classification by no means covers all the compressible flows
that can be treated by the hodograph methods, being restricted to only
those potential flows where Chaplygin's method may be applied. There
are many other types of singularities including some located in the
supersonic region which extend the flow field into the supersonic range,
but such cases are out of the scope of the present treatment.

GENERALIZED RINGLEB FLOW

It is known that a doublet at the origin of the hodograph plane
corresponds to an incompressible flow turning gbout a semi-infinite thin
plate in the physical plane. In 1940, Ringleb (reference 12) was the
first one to modify such a hodograph doublet with & compressibility
effect. He found the streamlines near the tip of the plate could be
conformally maepped back to the physical plane only so long as the maximum
flow velocity q on the streamline never reaches 1.67 times the stagna-
tion sound velocity ao(M = 2.5). For higher velocity, the Jacobian

d(x,y)/9(q,8) of the transformation relation between the hodograph
plane and the physical plane becomes zero along a curved line and the
mapping is no longer conformal. At this line the streamlines will form
cusps and double back on themselves. No physical flow can be attached
to such streamlines. Barlier than 1940, the Clausers (reference 20)
found this feature for compressible flow turning within a concave corner.
They further discuss the singular behavior of the streamlines and show
that the locus of the cusps in the physical plane corresponds to the
locus of the points of tangency of the streamlines and the characteristic
curves Iin the hodograph plane. The acceleration is infinite at the cusps.
This flow leads to the concepts of the forbidden region of Von KArmin
(reference 7) and the limiting lines of Tollmien (reference 16) and
Tsien (reference 17). Furthermore, Ringleb was the first to show that
smooth transonic flow was possible in a convergent-diverent nozzle
formed by the streamlines in the so-called "Ringleb flow."

Figure 3(a) shows that incompressible flow turning a convex corner
of angle 2% - o corresponds to a lemmiscate family within the two
straight-line asymptotes which contain the angle o - w 1in the hodo-
graph. It is well-known that this incompressible flow can be expressed
very simply analyticelly both in the physical plane and in the hodograph
plane. At the sharp convex corner the local flow will reach infinite
velocity corresponding to the assumed infinite sound velocity of the
incompressible fluid. This flow covers a semi-infinite region in the
hodograph bounded by the aengle a - x. However, 1f the compressibility
of the fluid is considered, the sound velocity becomes finite. The
possible flow in the hodograph plene is confined within a circle of
ultimate velocity g and the angle o - w. Actually, the flow will




NACA TN 2885 11

break down somewhat before the velocity reaches g, owing to the exist-
ence of the limiting line.

As mentioned previously, Kraft and Dibble have studied these flows
around convex corners, devoting particular attention to the use of a
60° corner. In the present paper a number of additional exsmples are’
given and such features as the location and shape of the limiting lines
are studied in greater detail.

Consider the incompressible flow whose complex poténtial is repre-
sented by the analytic function

where wy = ¢i +1¥; and =z = rei@ a8 usually defined. Here 8 is

restricted to 0 £ @ < 2x which means only the first sheet of the
z-plane is considered. The stream function then is

¥y = ™ sin mg (12)

which gives Wi =0 when 6 =0 and ﬁ/m. Thus equation (11) repre-

sents the complex potential of a corner flow. Introduce the angle which
the flow turns as

(13)

R
1
=R

Then it 1s apperent that the corner angle is 2n - a. Consider now only
the flow passing a convex corner which corresponds to n < a < 2rx or

1>m21l/2.
The complex veloéity is

aw
q = Iqile-ie - EEL = mp-1 _ -1l i(m-1)8 (1k)
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which shows Ei——)oo as z——>0 and ‘cji——)O ag z—>w for con-

vex corners. Conversely,
1

T \m-1
zZ = (-qi) (15)

m

Thus the flow about the convex corner can be represented in the hodo-
graph plane as

m

T.\z-1
Wy = (Eé> (16)

m

The corresponding stream function in the hodograph plane is

¥ =—(g-1-)m—lsin n_o¢ (7)
i m m

The streamline Wi = 0 corresponds to the boundary of a concave corner
in the hodograph where 6 = a - 1 < 1. The streamlines correspond to

leaves of one branch of the lemniscate bounded by that angle, all of
which are tangent at the origin. Note that the flow in the physical
plane occupies a region of angle o« while the flow in the hodograph
occuples a region of angle o - =x.

The corner flow has only one singularity, loceted at the hodograph
origin. For the case a = 3ﬂ/2, the hodogreph singularity is a quad-
rupole derived from two sources on a diagonal at 45° and two sinks
at -45°. For flow turning around a semi-infinite flat plate o = 2=,
there is a doublet at the origin. These are examples of the first class

of hodograph singularities.

Now, following Chaplygin, introduce the compressibility effect into
the hodogreph equation (equation (4)). Here n = n/(x - a). The solu-
tion V¥, from equation (7) gives

L 2
v (@) = ¢ F<a,b; c; q2> (18)

n-
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where
7
a +b = o " B
ab =-B _= 28 - o
2xX -a\7w -a
o = 2% - o
TN -
Q@
The hypergeometric function F(a,b; c; — can be represented by the
o
infinite series
- o 2k
Fla,b; c; q_z = l"(c) Z I‘(a + k)r(b + k) %_(i) (19)
9, r(a)r(p) k=0 I'(e + k) *\%4m

This series becomes finite if & or b is a negative integer. This
fact is utilized for the present numerical calculations.

Thig solution, equation (18), is convergent for all values of
7

q<q and passes contlnuously into q’t'“' as M —>»0 as ensured by

equation (10). Imtroduce T = @ /qm2 Then this can be written

ENErS
Wq) = (i)"’"‘ +2 - F(a,b; ¢; T) (20)

The solution of V¥(gq,8) in equation (4) can be written as

=

1l =
a~ 5 —_
¥ = A(-J;> 2 TG F(a,b; ¢; 7) sin —>— 6 (21)

qm o - 7
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Imposing the condition that ¥ —> V¥, in equation (17) a8 M —0, A

can be determined as .
X
o
Thus
R
V= (a%m) AT F(a,b; ¢; 7) sin —~— 6 (23)

which shows the same hodograph singularity at the origin as the incom-
pressible case.

Physical Coordinates

As soon as V¥ . is known in the hodograph plane, each point in
T-a
the hodograph can be transformed back to the physical plane by the
following relations:

T h
Qv '+
——ﬂ’t a-=x —ﬂﬂ cos( - ’_‘ﬁ)e
x-xo=- - - a +
1/2 B 1 L :
2ar/%(1 - 7) -
T
av _ ' - ¥
= CJ[’"ﬂ———co:sx(l-f ")e
- T -
1/2 b1S {
2/ 2(1 - )P 1+ ‘
,f e
ay '+
X a - 7 sin(- :r)e
Y - Y. = - N=-Q - a - % +
(o]
1/2 x
21'/(1-'1')B l-s-=%
- T
ay ' - ¥
T aQ - 7 T sin(l+ Tf)
-l - oL -
o 1/2 B 7
217°%(1 - 7) 1+—= |

where X, and y, ere Integration constants. .




NACA TN 2885 15

The above transformation reletions are conformal as long as the
streamline is not tangent to a characteristic, where the Jacobian
o(x,y)/3(q,8) equals zero. The locus of the points of tangency of the
characteristics and the streamlines is called the limiting line by
Tollmien (reference 16) and Tsien (reference 17). Its position in the
hodograph plane is governed by the following equation:

.a_lli _ iZT\/; l-7 a‘lf (25)

o6 2ﬁ+l)T-lS‘;

Substituting V¥ into equation (17) results in a relation of 6 and ¢q
which represents the limiting line. Here

Cm g\ eaBm-a) [ 1T FapieT)
2 (ﬂ—a) * Tt V(ZB+1)T-1F(a,b; c; T) (26)
where
F*(ab; o5 1) = L)L S=Ler Kb )| x ok

r(a)r(v) =o r(c + k)r'(k + 1)|2(x - )
(27)

With the knowledge of the position of the limiting line in the
hodograph and the respective values of W(q,e) for points upon it, the
corresponding limiting line in the physical plane can be found by means
of equation (24).

Examples of Generalized Ringleb Flow

It may be of interest to both the theoretical and the practical
serodynamicist to show a few concrete examples of compressible flows
derived from the incompressible flow turning around convex corners of
different angles. Compressible flows sbout corners of 46.8°, 90°, 132.9°,
and 150.8° are shown. This seemingly arbitrary choice of angles is due
to the fact that the corresponding hypergeometric functions have a
finite number of terms in-the series expansion.

Compressible flow turning sbout a smocoth corner of a 90° angle.-
Figure 3(a) shows the incompressible flow about a convex cormer of 90°
both in the physical plane and in the hodograph plane. (Actually the
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physical plane has been rotated 15° to emphasize the symmetry of the
flow.) The velocity at B is infinite so there is an infinite region
in the hodograph plane. The hodograph streamlines are one branch of a
femily of four-leaved lemniscates, all tangent at the origin where the
quadrupole singularity is located. It is easy to see that the physical
flow at infinity maps to the neighborhood of the hodograph origin A,C
where the velocity is zero. Figure 3(b) shows the corresponding com-
pressible flow in both the physical and hodograph planes. This is
obtained by Chaplygin's method; for example, take a streamline of incom-
pressible flow, say V¥ =.Cy, and change the velocity magnitude from

—— —

5 \@=% 5t \@&=TC q?
-—) to ——) F|a,b; ¢; ——]| without changing the phase angle 0
aq aq 'qm?
of the velocity. This can be done graphically in the hodograph plane.

A few features should be noted. The compressible domain is confined
within a ci{cle of. radius Q- The sonic circle divides the hodograph

reglon into two parts, that is, subsonic or elliptic domain (g < =)
and supersonic or hyperbolic domain (q > a). Within the subsonic
domain the two planes are conformally related. For the supersonic
domain, the two planes are still conformally related up to that stream-

line, say V = CO+, which 1s tangent to a characteristic at A. The

corresponding physical streamline (called streamline b later) has a
discontinuity in slope at A. To examine this flow in more detail,
figure L(a) shows that compressible flow is physically possible for
streamline b and for all streamlines outside it. On streamline b,
the slope is discontinuous at A and C(a/a, = 1.12) which corresponds

to the infinite slope of q or infinite acceleration at these points as
shown in figure 4(b) and to the points of tangency of the streamline to
a characteristic as shown in figure 4(c). It is interesting to find
that the maximim obtainable velocity for smooth transonic flow can be
found at B where gfay = 1.33 which is smaller then that of Ringleb

flow (g/ag = 1.67) which is given in reference 7. The limiting lines

are shown in both the physical and hodograph planes. The points A
and C are the cusps of the limiting lines in the physical planes.

The streamlines inside b double back from the limiting line, which is
the locus of the streamline cusps. This discussion parallels the work
of Ringleb (reference 12) and Von Karmén (reference T).

However, there are a number of interesting new features to be
explored for this case. First, in figure 4(a) the sonic line in the
physical plane is always perpendicular to the convex corner symmetrically
at D end E. (The dotted cormer represents the incompressible bound-
ary; the solid lines, the compressible.) The loop of the sonic line is
somewhat of the shape of one branch of a lemniscate, in contrast with
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the circle in the Ringleb case. The limiting line is also symmetrical
and terminates at D and E, normel to the corner. The two inner
branches AD and CE of the limiting line lie just inside the sonic
line in the physical plane. In the hodograph plane, they are also
normal to the boundary and tangent to the sonic circle. However, the
b streamline with maximm velocity q/a, = 1.33 begins to be tangent

to characteristics et A and C where this streamline has infinite
acceleration. Although the limiting line is a smooth symmetrical curve-
in the hodograph plane, the Jacobian Jd(x,y)/d(q,8) =0 at A and C
and the conformal mapping to the physical plane breeks down. The lim-
iting line in the physical plane has cusps at A end C. Now the hodo-
graph region, a quadrant of the circle of ultimate veloclty, is divided
into four kinds of regions by the limiting line DACE and the stream-
line OABCO. (See fig. k(c).) The region OABC represents a physical
field of smooth isentropic flow freely turning the cornmer. The plece

of flow within ODA 1is also isentropic physical flow, but this flow
caennot continue beyond the limiting lines AD or CE unless fluid is
properly withdrawn along AD and injected along CE. For example y in
figure 4(a) streamline ¢ is first reflected at an oblique angle by

the branch of the limiting line AD. The reflected portion corresponds
to the portion of the streamline c¢ beyond the limiting line in the
hodograph. Then the limiting line reflects c¢ =again at another oblique
angle. This portion of ¢ 1lies in the region between the limiting line
and the streamline OABCO in the hodograph. Then the streamline c
proceeds, doubling back at the limiting line and creating a symmetrical
pattern with respect to the center line of the corner. It is interesting
to see that the entire hodogreph flow in the quadrant of the ultimate-
velocity circle maps into a three-sheeted Riemann surface in the physical
plane. If a vertical cut of the flow field through D and E is made P
one can imagine a threefold sheet as shown in figure 4(d). The branches
of the 1limiting line can be visualized as folding lines of the Riemann
surface and each point on ¢ lying between branches of the limiting

line has a triple-valued velocity as shown in figure 1lL(b). This con-
ception may help to explain the mathematicael nature of the flow. How-
ever, the second and third sheets of the Riemann surface have no physiceal
reality, and only the first sheet corresponds to physically possible flow.

Finally, in the Ringleb flow, the limiting line in the hodograph
is monotonic, increasing in curvature up to gy, and tangent to both the

sonic circle (this can be extended in figure 22 of reference 7) and to
the ultimate-velocity circle. It resembles a half ellipse. In the case
of a 90° corner, the limiting line has two points of inflection although
still tangent to both the sonic and the ultimate-velocity circles.

. Compressible flow turning sbout other angles.- The flow turning a
90° angle was described fully in order to show its physical and mathe-
matical features. Three more corner angles, namely 46.8°, 132.9°,
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and 150.80, have been calculated and are shown in figures 5 to 7. The
notations are consistent with the case of the 90° cormer. The acute
angle of 46.8° is between the Ringleb case (0O° angle) and the 90° angle.
Not many new features can be shown in figures 5(a) to 5(e) except that
(q/ho)max =1,50 at B. A detalled study of these figures can show

many features of the Ringleb case which, unfortunately, has not been
fully illustrated except in reference 7. Incidentally, the case of
Kraft and Dibble (reference 13) has an acute angle of 60° which lies
between 0° and 90°. The value of (q /ao)m for smooth flow is hard

to estimate from their curves. However, it appears to lie between the
present values for 46.8° and 90°.

Figures 6(a) to 6(d) show & cornmer of 132.9°. This case shows
additional interesting features. For instance, at F (fig. 6(c)) there
is a turning point on the limiting line as it reflects from the straight
boundary in the hodograph. For this velue of g/a,, ¥ =0 and thus

the circular arc GF i1s also part of the compressible boundary. In
the physical plane this section of the boundary is & circular arc where
a/a, is constant (1.00). Although the bounding streamline appears

smooth, the enlarged view in figure 6(d) shows that it is not. TFor the
last smooth streamline b, q/ao is practically constant along that

portion of the streamline ABC which is nearly a circular arc. The
legs of this streamline sre nearly straight lines forming an angle
of 139°. The value of gqfa, at B is 0.98.

The limiting line will form a loop at velocities higher than
(q/ho)F and is tangent to the ultimate-velocity circle. Thus the lim-

iting line, the streamline b, and the constant-veloeity arc GF will
divide the sector of the ultimate-velocity circle into six kinds of
regions. Then the flow in the physical plane will give a five-sheeted
Riemann surface rather than three as before.

The projection of the extended straight-sided boundaries into the
field of physical flow and the existence of a rounded constant-velocity
tip show this case is essentlally different from the preceding angles
where the flow is closely related to the Ringleb flow. .

Figures T(a) and T(b) show the flow sbout & corner angle of 150.8°.
Calculasted data are insufficient to predict the shaepe of the sonic line
near D and E. This is the most reasonable guess for the shape. The
looped shape of the sonic line is very long and narrow. It is perpen-
dicular to the extended boundaries of the corner angle at D and E.
The inner branches of the limiting line coincide with the sonic line
near the corner. There are many questions gbout this flow which have
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not been settled by the authors. These unsettled date are published
purely for stimulation of future investigation.

If this apparent pattern of the sonic loop is extended to the con-
vex corner engle very near but smeller than 180° , 1t is expe.ted that
the loop will become very tall and narrow. In the limit 2x - o — 180°,
the sonic loop probably collapses into a single straight line perpen-
dicular to the wall, extending to infinity.

When the calculation was undertaken, the authors anticipated finding
the relation of the corner angle and maximm q/ 8, 1in isentropic flow.
However, with the few angles studied, (q /ao)

max
simple curve, which is all that can be concluded at this time. It seems
significant that the maximm velocity point does not shift off the
corner center line, and the flow remains symmetrical.

does not follow any

It is apparent that even the simple corner flow deserves more
extensive study. It is expected that this simple flow will help in
understanding more of compressible flow and its nonlinear equations.

CCMPRESSIBLE FLOW THROUGH A TWO-DIMENSIONAL

SYMMETRICAL CONTRACTING CHANNEL

The usual requirements for an incompressible flow through a two-
dimensional contracting channel are a low, uniform incoming flow velocity
and a high, uniform outgoing velocity at the throat. Uniform velocity
at the throat cannot be achieved by imposing arbitrary outer boundaries
to the channel. However, fortunately, in the hodograph plane, only a
source and sink need be specified for such a flow. As far as the cor-
responding boundary streamlines are concermed, the choice is left
entirely to the aerodynamic designer of the channel; he is at liberty
to choose those hodograph boundary streamlines which are easy to express
analytically. Thus the whole class of incompressible channel flows can
be treated favorably by the hodograph method. Along this line of
thought, Whitehead, Wu, and Waters (reference 15) show the details of
caelculating such a symmetrical channel for incompressible flow.2 How-
ever, the method can be applied also to the unsymmetrical channel, if
some analytic expression can be found for the chennel boundaries.

2Inc:I.tien‘l:a.l_'l.y, the present suthors have found a misstatement in
equation (9) in reference 15. The last two terms of equation (9) do
not cancel as Indicated for the case k = 2.
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The aim of the present report is to show the extension of this
hodograph method to calculate compressible flows through such contracting
channels. This is achieved by first expressing the incompressible case
in a power series of g and then finding the corresponding compressible
flow.

Incompressible Flow through a Channel

The most practical case to consider is the flow through a two-
dimensional symmetrical channel. For simplicity in analysis, take the
ratio of incoming to outgoing velocity as 1:2 for the incompressible
flow. Since the flow is symmetrical with respect to the horizontal
axis, only the upper half of the channel is considered. The corre-
sponding boundary streamline in the hodograph is the vertical radius
and the 900 arc of a unit circle whose center is the source located
at 9y - A sink is located at the end of this sarc, namely Aoy = qu.

The other boundary is the image with respect to the horizontal axis.
There are two advantages of this choice. First, the whole flow lies in
the annmular region between the two arcs of radius 9 and q,, SO that

one series can represent the entire flow without the complication of
analytic continuation. Second, the incompressible flow can be described
in a simple analytic expression in the hodograph plane. Even in this
simple case, the computation is quite involved.

There is an inherent disadvantage with this choice; that is, the
length of the channel will be infinitely long. The practical applica-
tion of such a channel seems lost. However, if a reasonable engineering
tolerance is admitted to the values of the incoming and outgoing veloc-
ities, say 1 percent, the channel length will be finite. With the knowl-
edge of this case, a compressible flow for a finite-length channel can
be constructed with the technique of analytic comtinuation.

FPollowing reference 15, it is not difficult to show that the non-
dimensional complex potentisl for the channel incompressible flow with
q = 1 and Yy = qu can be expressed in the hodograph plane as

Wy = — loge

= %loge (Ei - l) - loge Q3 - loge (l - %%) - loge (-2) (28)
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where Ei = qie'ie =uy - ivi is the conjugete velocity vector. Since

the complex potential is subject to the indeterminancy of a constant, the
term log (-2) can be neglected. The second expression is written to

show that the hodograph source is loge (Ei - ) and two hodograph sinks

are -logg Ei and -logg, ( - %;). All are of the same strength. Of
course there is another source of equal strength locaeted at infinity so
that the entire flow is steady and in equilibrium. Equation (28) repre-
sents the flow field covering the entire hodograph plane. However, if
the condition 1 <q <2 is imposed, equation (28) can be expanded into
a single power series of qi Consequently,

I
nn:

00

S_Lmm - 2y " (29)
n=1 2

If Ei is expressed explicitlyAin terms of @y and 6,

y <=1/ -n ine -n_ .n -ind
wi = - ; E . H (q-i e - 2 nqine ) (30)
n=

Compressible Flow through a Channel
Now the compressibility effect can be considered. Chaplygin's
procedure shows that, for each value of n, the incompressible velocity
qiin in the stream function.will change to a new velocity magnitude
w+n(7)/win(Tl) while the angularity 6 remains the seme.3 Being

linear in the hodograph plane, all the solutions are superposable. Thus
the nondimensional stream function is

¢ Tp=1 o W—n(Tl) n(Tl)
31p q4o = 1° is chosen, (T)/@in(Tz) should be used to replace

win(T)/@in(Tl) and T; should be replaced everywhere in the later
expressions. .
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Of course, the above V., can be considered as the imasginary part of

the ‘complex function .
o V() e _-av (7) ?
S b1 RPN |
Wc = o 2 a m e 2 wn(’rl) sin nf (32)

but the real part of W is no longer a solution of the potential ¢c

as in the case of incompressible flow. It is well-known that jZSc
and V., are not conjugaete functions in compressible flow. It should

be remarked than an infinite number of channel shapes of compressible
flow can be constructed from the same incompressible flow by choosing

+n
some function on(Tl) to replace Win('rl) 50 tha?c fin(Tl) —5q |
as M —>O0.

Physical Coordinates

As shown in references 4 and 1k, introduce the physical coordinate
Z =X +1¥, to correspond to each eigenvalue n. Then i

00

1S (o) Gows ave comtama) (39

n=1

It can be shown that for n £ 1

Zn = X‘.’l + iYn
_ b 1 e(1-n)i6 . ,
== m_l/z(l - .,_)B o n)‘l'_n(Tl) - %ﬂf_n(T) - TV, (TZ] + |

pne(Tm)io [o o
o n)‘!fn("'l)l_z VL (T) V' ( z] +

o(14n)i6 ['_ n
(1 +n)v () 2

w_n('r) + Tw_n'('r)i] -

z-ne-(l-n)ie['E Y ey T] A .
- n)\Vn(Tl)LZ Y (T) + Ty (T) (34) |
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where

‘l’inl('r) = %—E&in(TEl

Por n=1

7y =X +1Y;

1 1 l_:]-__l-(l—T)B'*'l _
T B

Wi(Tl)l_ (8 +1)r(1 - 7)

1 38 + 2 1 - B (l + BT) eize +
T\l{_l(Tl) Bp+1 (l - T)B B+ 1

A |-

1 B 1 -216
_I—Fl(—rl) + 1l’,-l(,l.l)] Oge (Te ) +

11 (3B+2)(ZB+1) 1 _al .
_1]:1(71) V_4(7) (p+1) [ - 7B

A+

A+

28 __2B(3B+2) |7y . __28 logg T
V()8 +1)  Y_3(79)(B + 1) wy_5(7)

(35)

%
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where

-1/2
¥y (1) = T——/—l} - (- T)B”l:l

Bp+1

1/2

V(1) = THE L By (m)

1fT 1- (28 + )7 _lar
0

e(r) = 2 (1 - 7)BHL - T

Values of the function g(7) are shown in teble 5 of reference 1b.

\

Numerical Calculation of Compressible Channel Flow

A numerical calculation for the above analysis was made for the
case Ty = 0.02 (Ml = 0.320, gq; = 354.0 Pt/sec, and 8y = 1117.4 ft/sec).

For comparison, the incompressible channel flow with the same inlet
velocity was also made. The hodograph boundary and the channel geometry
for both flows are shown in figures 8(a) and 8(b). For both cases, the
hodograph source is located at A (ql = 354.0 ft/sec). The incompress-

ible hodograph sink is Bi(qu = qu). The streamline boundary ¥ = 2
is chosen for both the compressible and incompressible cases. Note
that, for the same %4 Q. is much larger thsn qu. (In fact,

M, = 0.787 and qp, = 825 ft/sec.) A few points in figures 8(a)

and 8(b) need some clarification. Far upstream, both channels have the
same width 4, and Yy = ¢c = 2 on the upper boundaries because both

channels have identical inlet conditions. The points of inflection of
the incompressible and compressible channel boundary sre I; and I,

respectively. As expected from the compressibility effect, the compress-
ible flow channel is wider than the incompressible one. However, if
outlet concitions of both channels were matched (qzc = qu), the incom-

pressible channel would be wider than the compressible one.

The convergence of the series solution in V.. 1is extremely slow.

It is difficult to obtain & reasonably good summetion with n up to 15
as given in reference 9, particularly when the velocity phase angle is
very small and the Mach number is nearly sonic. Shanks' method
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(reference 10) makes possible a closer approximetion to the value of ﬂfc

with so few terms. It had been planned to calculate the compressible
channel flow with sonic throat velocity. However, owing to the insuffi-
cient date in the table and slow convergence of the series, this project
was not carried through although the authors fully realize the engi-
neering importance of a contracting channel with sonic throat. The
example gilven shows it is possible to obtain an exact solution for com-
pressible channel flow and that this method can be applied to the soniec
case when sufficient data are avallable.

Figure 9 shows the various streamlines in the T6O-plane. The
meximm T at the throat is 0.11 (M = 0.787). Owing to the slow con-
vergence of the infinite series of V,, Tp., &t the channel throat is

only reasonasbly correct and may be subject to & small error. It is
noticed that the maximum velocity angle 6 of each streamline occurs
nearly at the same value, T = 0.042, where the points of inflection
are located.

Figures 10(a) and 10(b) show the position of the boundary stream-
lines of both the compressible and incompressible cases expressed in
terms of x = x(7) and y = y(v). In the compressible case, T = qcz/qm2

is already defined. TFor the incompressible case, T 1is directly pro-
portionsl to the square of the incompressible flow velocity where the

constant of proportionality is taken as 1 > = 12 8o that

(7 - l)a'o qﬂl
T = qiz /qm2 Then T 1is a good measure of relative velocity magnitudes
in the compressible and incompressible flows. It is difficult to calcu-

late both x(71) anmd y(7) in the compressible flow. The dashed line
of 1lfc means the best approximation so far. Similarly the x-coordinates

of the center streamlines Ilfi =0 and \!fc =0 as a function of T are

also plotted in figure 11. With the data along the streamlines
\ch =0, 1, end 2 the approximate contour lines of constant velocity

for the compressible flow channel near the point of inflection I, can

be shown (fig. 12). To compare details of the channel wall, the boundary
line of the Ilncompressible flow is translated so thet its point of inflec-
tion Ij coincides with I, (fig. 13). It shows that the channel area

of the compressible case decreases slower with x +than the incompress-
ible one in the neighborhood of the point of inflection.

The Johns Hopkins University
Baltimore, Md., May 28, 1952
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AFPENDIX A
EXTENSION OF HUCKEL'S TABLES FOR SUBSONIC RANGE

For the contracting channel, the whole flow region covers only a
small range of 7. Many values of the Chaplygin function for T inter-
mediate to the arguments given in Huckel's tables (reference 9) are
needed to determine the flow field accurately. In order to avoid inter-
polating every time, each subsonic section of the tables was interpolated
as a unit so the Chaplygin functions can be read directly as needed.
These values are given in tables 1 to 4. The accuracy of the values
should be at worst only one place less than the figures in the original
tables.

As has been noted in the errata, the headings dYk/aT and dY_k/aT

for tables 3 and 4 of Huckel's report are in error. To obtain the
actual derivative, each tabulated value should be multiplied by —kB/z.
The values here listed in table 3 and table Lt are the derivatives and
are denoted Yk,(T) and Y-k'(T) to prevent confusion with the headings

in the original tables. Otherwise the arrangement and notation corre-
spond exactly to Huckel's tables.
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27.

APPENDIX B

SYMBOLS

sound velocity <‘ /-p—- = V&R‘I‘)

,7P0
st tion sound velocit —_— = RT
agna y < Po QY o>

typical smooth streamline

streamline of smooth isentropic flow with maximm
velocity

typical streamline that doubles back at limiting
lines

index number for summation
index power

eigenvalue

local pressure

stagnation pressure

velocity magnitude

velocity magnitude of incompressible flow -
velocity magnitude of compressible flow
incompressible conjugate velocity vector

awy .
EZ——=ui-1vi

ultimate velocity G@ V?l)

inlet velocity
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throat velocity
incompressible throat velocity
compressible throat velocity

velocity components

incompressible velocity componénts

complex potential

complex variable function, the imaginary part of
which is the stream function

rectangular coordinates

complex variable (re18>

locations of cusps of limiting line

location of maximm velocity in smooth isentropic
flow

termination of sonic line and limiting line at
convex corner

intersections of limiting line with convex corner

2
4 ) hypergeometric function

point of inflection of channel boundary for incom-
pressible flow

point of inflection of channel boundary for com-
pressible flow

Mach number

molar gas constant
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temperature

stagnation tempersature

physical coordinate corresponding to each eigen-
value n

physical coordinates corresponding to & hodograph
point

angle covered by flow

angle of convex corner

specific heat ratio; for air 7y = 1.4
velocity phase angle

phase angle of incompressible velocity
phase angle of compressible velocity

local density

stagnation density

potential in incompressible flow
potential in compressible flow

stream function

incompressible stream function
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¥ compressible stream function

c

(@) = aTF (ay,by5 e 1)

8 phase angle of complex variable
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TABLE 1.- Yk('r) FOR VARIOUS VALUES (F k

T Yy Y, b T, Yg Y bt Yg
0.02 0.97525 0.95087 0.92700 0.90369 0.88093 0.85873 0.83708 0.81596
.022 .97280 . 94606 91991 89446 B6966 .84553 .82207 79923
.02h .97036 94126 .91287 .88530 .85850 .83250 .80T28 .78278
.026 96792 .93648 .90587 87621 LB4TUS .81963 19270 .T6661
.028 -96549 -93171 89891 .86718 83651 80691 -T7833 .T5072
.03 96306 .92695 -89198 .85822 .82568 7943k 76416 73511
.032 .96064 . .88509 84934 81496 .78193 .T5021 9T
034 .95822 .91Th9 87824 84053 .B0k35 76969 T36%T .TO%70
.036 95581 .91279 .871k3 -83179 79385 -TS760 72294 .68989
.038 95340 .90811 86466 82311 78345 ThS66 70962 .6753%
.0k -95099 :90346 85792 -81hh9 .T1316 73386 69651, .6610%
042 .94859 -89882 .85122 .8059%4 .76298 -T2221 68359 64699
LOhh 94619 89419 856 79746 .T5290 TIOTL .67086 .63319
046 .9%380 .88958 .B375% 78905 Th292 69936 .65832 K
.048 9hlk2 88498 .83136 78072 73304 .68816 64598 .6063%
.05 93905 .88039 82481 TT2k6 .72326 .6TT10 .63383 .59328
052 .93668 87582 .81830 .T6h2h .T1358 .66618 62187 .58045
.05l .93431 8727 .81183 75609 .T0400 65540 .61009 56785
.056 .93195 .866Th .80539 .Th80L 69452 64476 55849 .
.058 92959 86223 79899 74000 68515 63426 .58706 .54331
.06 .92723 85773 T9R62 73205 67588 .62389 . .53138
.062 .92488 .85325 18629 .T2h16 66671 61366 .56kTh 51967
064 .9225h4 84878 78000 T163% 65763 .60356 .55384 .50817
066 .92020 84433 STT375 70858 .6486% 59359 54311 k9688
.068 91787 .839%0 76753 70088 63974 .58375 .53256 48580
.07 .91554 .83549 76135 .69325 .6309% .57h05 .52218 LThg2
.072 91322 .83109 75520 .68568 .62223 56448 51196 .
o7k 91090 82671 TH909 61817 61362 85503 50190 55376
076 .90858 .8223h .Th4302 67072 .60510 54570 .hg200 R
.078 90627 81799 73698 .66333 59667 .53650 48226 43340
.08 .903% .81366 73098 65600 58834 .527h2 47268 .h23s2
.082 .90166 80934 .T2S01 64873 58010 51847 46325 .51383
.084 .89936 80504 .T190L 64152 BT195 50964 45397 ko432
.086 89707 -80076 .T1317 63437 .56388 .50093 BT .39498
.088 -894T9 -T9649 70731 62729 .55589 -h9233 -43586 »38580
.09 .B9251 19224 .T0Lk9 .62027 .54768 48384 2704 .37679
092 89023 78800 69570 .61331 54016 h7557 51836 36796
0% 88796 .78378 68954 60650 53243 h6T22 50982 .35931
.096 .88569 T7958 68421 .59954 52579 45909 ho1k2 .35083
.098 .88343 T7539 .67852 .5927h L5172k 45107 .39316 .34253
.10 .88117 TT122 67286 .58600 .50979 h4315 .38503 .33439
2102 87892 76706 .66T24 .57932 .502h1 4353 3770k .326h1
J104 87667 76292 66165 5T270 %9510 42765 .36919 .31858
106 .87h43 .75880 65609 .56613 487187 42007 . . .31090
108 87219 .T5469 65057 .55962 48073 41259 .35388 .30337
A1 86996 TS060 .6h508 .55316 k7367 .hos21 .35651 29599
2 86773 .Th652 .63963 .Sh676 -397%% -33907 -28875
q1h 86551 Thek6 6321 RToA R 45979 .39077 .33186 .2867
16 .86329 7384 .62882 5312 k5297 .38371 .32577 .2ThT3
118 .86107 .T3438 .623k6 . .52789 RIS 3767k 31781 .26793
a2 .85886 73037 .61813 .52171 43955 .36987 .31097 .26127
122 85665 72637 .61283 :ggg .36310 . .25%75
2% 88445 72238 60757 .50951 . .35643 .29764 .24836
126 .85226 .718%1 60235 .503k9 .h2000L .34985 .29114 .2k210
128 .85007 k46 59716 L9752 51364 -3%337 28476 .23596
.13 85789 72053 .59201 .k9160 -ho733 -33699 27849 22995
.132 70561, 58689 48573 ho110 .33070 .27233 .22ho7
134 84353 70270 58180 h799L -39495 32450 . .21831
136 81136 .69881 5767k A47hs .38887 .31839 .26034 21267
.138 .83919 69493 .5T170 46845 .38287 .31237 .25451
Ak .83703 69107 56668 46280 .37695 .30645 24879 .20L76
k2 83487 68722 .56170 k5720 .37110 .30062 .24317 .19648
JAkh .83272 .68339 55676 451648 .36531 26487 .23765 .19131
L2146 .83057 67958 .55186 44613 .38958 .28920 .23222 18625
148 82843 67578 54699 JhR067 .3539L .28362 .22689 218129
.6 .82629 .6T200 .5h218 43526 .34832 .27811 .22166 1764k
182 82416 .66823 .5373% . .34280 27269 .21652 .17170
154 82203 6647 .53256 . .33735 .26T36 .21148 16706
186 81991 66073 .527681 .51933 .33196 .26211 .20684 16252
.158 81779 65700 .52308 Jamz .32664 .25694 .20169 15808
.16 81867 .65331 .51838 %0896 .32138 .25185 19694 .15375
162 81356 64962 51372 .h038% .31619 .2h68k .19228 .
164 B11k5 65594 .50909 .39877 .31106 25191 .18T70 14536
166 .80935 64227 50449 .39375 .30599 .23705 .18320 15130
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TAELE 1.- Ik('r) FOR VARICUS VALUES OF k - Concluded

NACA TN 2885

T Yy Y Y, Y, Ty Y, Y5
0.02 0.79537 0.77530 0.75573 0.73666 0.71806 0.69993 0.68226
.022 TTT0h .T5549 STIT 71405 R 67598 | 65627
.02h 75906 .T3609 VTA372 .69203 611k . 6 .53108
.026 .Thk2 -TAT09 -69346 67060 64863 62727 60669
.028 .T2k12 69849 .67368 6h975 .62675 .60450 .58309
.03 70116 . .65438 62947 .60551 58246 . 9
.032 .6905h 66259 .63556 60976 .58591 .56113 .53829
.03% 67425 . 61722 . 56495 .54051 51709
.036 .65829 6281k .59935 57196 54562 .52060 R
.038 64266 .61156 .58195 .55383 .52692 .50139 4TT06
. 62736 .59538 .56502 .53619 .5088% 48287 45823
042 .61237 57957 54853 51904 k9129 46493 44001
.O4h .59768 56511 .532kS .50238 h7hzh J4hTss 2239
.0k6 58328 . 51675 48620 45768 43072 50537
.08 56915 .53418 .50151 R (0T 4H161 Jh1hhh .38895
.05 .55530 51972 .h86k2 45523 2ok 39871 .37313
.052 5h1Th .50560 k1183 4hoh0 .hogr .38352 357187
.05k 52847 hg182 k5764 k2599 .39638 . 34317
.056 .51548 B7837 k385 .41198 . . .32903
.058 50277 .h652h L3045 .39837 . .3h102 .
.06 4903k . JAaThs . .3853%4 .32782 30244
.062 41816 k3995 .Loy78 .37231 .3h2h9 .31507 .
.06h 46623 JB277h .39242 . .33003 .30276 2TTTH
066 hshsh 41580 .38035 J34TTH -3179% .29088 26604
.068 k309 .hoh13 . .33601 .30638 .279M 25477
.07 43189 .39272 .35702 .32h66 .29516 .2683h .2499%4
072 42093 . .3h501 .31364 . .25765 .23351
.OTh k1020 3707k .33506 .30293 L2737Th .2h734 .22348
076 -39970 .36017 .32453 .29252 .26353 .23750 .21384
078 -3854%% -3k988 .31431 .282h1 .25 .22782 .

.08 .37941 .33985 .30439 . .2hk12 .21860 1957k
.082 .36550 .33006 29472 .26309 .23489 .20971 .18721
.084 .35999 32050 .28530 .25387 . .20113 .17899
.086 .35058 .31116 .27613 .2hligh .21733 .19285 .17108
.088 .35138 .30203 .26721 .23630 20900 18487 .16348
.09 .33238 .29315 .25852 .22795 .20098 .1T7119 15620
.02 .32358 28448 .25008 .21985 .19323 . 9 14920
0% .31498 .27603 .24188 .21199 .18573 16267 k24T
.096 30657 26780 .233% 20436 17848 .15582 13601
098 .29835 .25979 .22620 19696 ATLNS .14921 .12983
.10 .29032 .25201 21871 .18978 L16465 14284 12391
2102 28247 .2khke 21143 .18283 .15809 13671 11822
104 .27480 23700 .20435 17610 15177 .13031 11275
106 .26730 .22978 19746 16959 .15568 . 10750
.108 .25997 .22273 .19076 .16331 .13982 .11970 .10248
A1 .25280 .21585 . .15725 .13519 11549 .09767
J12 24580 .20915 TT9S .15138 .1287% 10948 .09307
1k .23896 .20263 17183 . 123k7 10465 .08865
J16 .23228 .19629 16589 14016 .11838 .10000 08441
118 22576 .1900h .16013 13482 L1137 .05552 .08035
.12 .21940 .87 . 12965 .1087h .09119 07646
122 .21319 .17835 14913 .12k65 .10418 08704 .07273
.12k .20712 17267 14387 .11982 .09979 .08307 06916
126 .20119 .16713 .13876 .11516 .09556 07927 06575
.128 219540 1617k .13382 11066 .09149 .07563 .06250
.13 .1B975 15649 .12901 210631 .08759 .0721% .05641
132 .1842% .15139 .12k36 .10211 .08383 06879 .05645
.13k .17886 14643 .11685 .09805 . .06557 .05361
.136 217361 K6 . .05HL3 07670 06247 .05088
.138 16849 .13693 11124 .0903% .07333 05950 .o4827
Ak 16349 13238 21071k 08667 .07008 05665 04578
A%z . -127%6 10317 .08313 . .053%2 04340
kL .15385 .12366 .09932 07972 06996 .05131 o413
k6 J1hkg21 11948 .09559 .07643 .06108 04881 .03897
.1%8 .1Bh69 .115h1 .09198 . .05832 .oh6h2 .03692
.15 .1ho29 A6 .088k9 o021 .05567 .olh13 .03497
.152 13600 .10762 .08511 .06T26 .o5312 .0h19% .03311
.15h 13182 .10389 08184 L0641 .05067 .03984 .03133
156 12772 ..m arggg 06166 .0k831 '83352213. .02963
.1s8 12371 09T .07 .05901 R . .
a6 11987 .09335 . 05647 .04388 .03407 02645
2162 . 0900k .06978 05402 .04180 .03231 02497
6% 11241 .08683 .06T0L .05166 .03980 .03063 02357
166 .10882 .0837T1 06433 .04938 .03788 02903 .
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PABLE 2.- y_k(-r) FOR VARIOUS VALUES OF X
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TAELE 2.- Y_k('r) FOR VARICUS VALUES OF k - Cancluded

NACA TN 2885

T Yq Y30 Y, Y 12 T3 Y g Y .5
0.02 1.26173 1.25%33 1.32780 1.36215 1.397h0 1.43358 1.47069
.022 1.29254 1.32938 1.36725 1.40656 1.44631 1.48790 1.5305L
.02h 1.32433 1.36562 1.50820 1.h5257 1.k97h2 1.54464 1.59303
.026 1.35T17 1.50314 1.45073 1.50035 1.55083 1.60393 1.65845
.028 1.39111 1.4k203 1.49%92 1.55000 1.60665 1.66592 1.72707
.03 1.h2621 1.k8239 1.55087 1.60LT1L 1.66500 1.73081 1.79925
.032 1.k6251 1.52422 1.58861 1.65556 1.72590 1.79670 1.8750%
.034 1.50005 1.56755 1.63815 1. 716k 1.78938 1.86969 1.95550
.036 1.53885 1.61239 1.68951 1.77005 1.85547. 1.9%388 2.03772
.038 1.57893 1.65876 1.74275 1.83089 1.92425 2.02147 2.12480
.04 1.62030 1.70668 1.79793 1.89%23 1.99580 2.10292 2.2158k
.02 1.66317 1.75636 1.85530 1.96028 2.07055 2.18835 2.31150
0%k 1.70769 1.80807 1.91511 2.02918 2.14895 2.27790 2.h1226
046 1.7539% 1.86206 1.97760 2.10108 2.23129 2.37171 2.51052
048 1.80208 1.91838 2.04292 2.17618 2.31780 2.57003 2.63068
.05 1.85215 1.97710 2.11119 2.25487 2.40866 2.57318 2.74913
.052 1.90%23 2.03825 2.182k% 2.33720 2.50391 2.68143 2.8739%6
.05% 1.95838 2.10187 2.256T1 2.h2324 2.60360 2.79518 3.00527
.056 2.01%66 2.16801 2.33L04 2.51308 2.70778 2.91488 3.14317
.058 2.07311 2.236T1 2.h1h58 2.60687 2.81652 3.04108 3.28785
.06 2.13375 2.30801 2.45811 2.70506 2.93004% 3.17438 3.k3959
.062 2.19706 2.38248 2.58554 2.80805 3.04926 3.31h93 3.59973
064 2.26332 2.k6052 2.67Th2 2.9162% 3.17508 3.56293 3.7654T
066 2.33293 2.5428% 2.TTHh0 3.03003 3.30840 3.61858 .95001
*.068 2.50612 2.62966 2.87683 3.1h994 3.hhos2 3.78223 14215
.07 2.48306 2.7211) 2.98490 3.27669 3.59897 3.95453 4.34650
.0T2 2.56380 2.817k2 3.09865 3.41038 3.75686 %.13668 %.56329
.O7h 2.64845 2.91826 3.21M6 3.58117 3.92331 4.32988 ®.79276
.076 2.73708 3.02385 3.3h4351 3.69935 4.00845 4.53533 5.03516
.0T8 2.82975 3.13hk24 3.47h78 3.85523 L .282k9 L.75423 5.29096
.08 2.9265L 3.2h9%6 3.61220 %.01938 4.47610 4.68795 B.56117
.082 3.02836 3.37108 3.757102 %.19323 k.68161 5.23689 5.84888
.08k 3.13620 3.5008% 3.9118% .37808 %.90102 5.50145 6.15759
.086 3.2507h 3.63862 L.07696 4.57533 5.13623 5.78211 6.48930
.088 3.372k7 3.78585 %.25398 L.7863% 5.3885% 6.079T7 6.84676
.09 3.50151 3.94256 §.h4325 5.01237 5.65958 6.39561 7.23250
.092 3.63790 4.10883 L .644T9 5.25372 5.9k962 6.73313 T.687T14
.09% 3.78172 L .2847S }.85862 5.51072 6.25906 T.09663 8.09158
.096 3.93303 L. .y70%2 5.08476 5.78372 6.58820 T.49023 8.56682
.09 09187 k.66595 5.32323 6.07332 6.938k% T.91703 9.073%
.10 %.25830 4.87150 5.57h05 6.38120 7.3101% 8.380h0 . 9.61427
102 %.53508 5.09076 5.84187 6.71070 7.7088% 8.88127 10.19878
104 L.62319 5.32552 6.13119 7.06590 8.14254 9.52059 10.83739
2106 %.82310 5.57658 6.54401 7.45100 8.61k2% 9.99546 11.53600
.08 5.03533 5.84589 6.78133 7.86760 9.1279% 10.61918 12.30271
J1 5.26038 6.13305 T7.14387 8.31833 9.68601 11.28133 13.14450
12 5.490838 6.43861 T7.53176 8.80346 10.28948 ,11.99768 14.06339
Ak 5.7h949 6.762TT T7.94513 9.32329 10.93955 12.78323 15.06158
16 6.0138h T.10583 8.38415 9.87817 11.63752 13.64888 16.1%137
118 6.29057 7.46827 8.8496T 10.46975 12.38489 1%.60153 17.30516
12 .58282 7.85083 9.3%325 11.10378 13.18426 15.64628 18.56319
22 6.89106 8.25760 9.871@ 1178681 1k.05003 16.78463 19.94042
.12k 7.22718 8.69158 10. 12.5258% 15.99560 18.01818 21.46378
126 T.56168 9.154TT 11.05289 13.32487 16.02797 19.3k863 23.1482%
.128 T7.92507 9.64800 11.71096 1k.18750 17.1543% ‘20.77808 25.00800
.13 .3078% 10.27TATT 12.415k8" 15.11898 18.3769% 22.31221 27.06023
132 8.71.012 10.72621 13.16665 16.11916 19.7033h 23.961L4 29.31086
.13 9.1320% 11.31158 13.96467 17.18957 21.1291k 25.81577 31.76599
36 9.57373 11.92815 1%.80979 18.33166 22.6587k 27.83710 3h.43182
138 10.03536 12.57622 15.70290 19.54880 24.29334 30.05143 37.31415
Ak 10.5172k 13.25610 16.65687 20.84h27 26.03907 3246717 Lo. k10
k2 11.02162 13.97525 17.6%5183 22.2327h 27.51600 35.08651 43.80673
JAhh 11.54950 1473467 18.72179 23.72121 29.95183 37.91165 %7.53692
46 12.10178 15.53486 19.85925 25.31368 15966 50.94%79 51.64171
.18 12.67906 16.37632 21.06551 27.01415 34.54349 1%.,18893 .15450
.15 13.28171 17.25956 22.341h3 28.82866 37.10348 %7.68058 61.08451
.152 13.90826 18.18465 23.68721 30.75737 39.84047 51.%1098 66.%3272
.15h 1k.55831 19.1517% 25.10315 32.80058 - 42,75546 55.47628 72.20023
156 15.23156 20.16105 26.58955 3%.95859 45.84945 59.86098 .387
.158 15.9279% 21.21293 28.14695 37.23170 hk9.12kkh 64.5T768 8%.99595
.16 16.64743 22.30764 29.776%9 39.62058 52.58311 69.63353 92.0414L
162 17.39220 23.5464S 31.48333 42.13236 56.24378 75.03118 99.65693
J16h 18.16212 2h.63017 33.27307 L. TTTLh 60.12855 80.77293 107.88242
166 18.9570hk 25.86010 35.14681 47.56782 6%.26012 86. 116.73291
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TARLE 3.- Y, '(r) FOR VARIOUS VALUES OF k
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TABLE 3.- Yk'(T) FOR VARICUS VALUES OF k - Concluded
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TABLE k.- Y__ '(v) FOR VARIGUS VALUES OF k
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(a) Incompreasible flow.
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(v) Compressible flow.

Figure 1.~ Concluded.
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(a) Incompressible flow.

Figure 2.~ Vortex in potential fleld.
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Figure 3.- Flow eround a sharp convex corner (angle, 90°),.
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(b) Compressible flow.

Figure 3.~ Concluded.

Sgg2 NI VOWN



NACA TN 2885

(v) Velocity distribution.

Figure 4.~ Details of flow around a corner angle of 90°.
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‘(¢) Hodograph streamlines.

Figure 4.- Continued.
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Figure 4.- Concluded.







(b) Hodograph streamlines (E]qn? 9-—pla.ne) of compressible flow.

Figure 5.~ Continued.
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(e) Velocity distribution along somelimportant streamliines.

Figure 5.- Concluded.
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(a) Compressible flow streamlines.
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(b) Velocity distribution.

Figure 6.- Details of flow around e cormer angle of 132.9°
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Figure 6.- Concluded.
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(b) Velocity distribution.

Figure T.- Details of flow around a corner angle of 150.8°
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(b) Physical plane.

Figure 8.- Comparison of compressible and

incompressible fléw in

contracting duct.
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x-coordinates of boundaries.
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Figure 10.- Position of boundary streamlines.
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. Figure 11.- x-coordinates of center streamlines.
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Fgure 12.- Detalled compressible flow near inflection point.
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Figure 13.- Comparison of boundaries near inflection point I.
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